

School of Interdisciplinary Engineering & Sciences (SINES) Defining futures National University of Sciences & Technology

<u>Course Title:</u> Computational Vaccinology

Course Code: BI-852

Course Objective:

Primary focus of the program under which the proposed course will be conducted is

- Computational methods to predict vaccine antigens and immune epitopes.
- Reverse vaccinology approaches for genome-wide vaccine target identification and vaccine development.
- Case studies of applying bioinformatics approaches in vaccine development.
- Informatics methods for improving surveillance of vaccine safety and efficacy.
- Modeling of impact of vaccine immunizations against target diseases (e.g., pandemic influenza)
- Vaccine related databases and analysis systems
- Vaccine related data integration and literature mining

Course Outcomes:

After the course the students will be able to apply different concepts of Computational vaccinology on various practical problems.

Course Contents

- □ Introduction to Computational Vaccinology
 - o Design of New Vaccines in the Genomic and Post-Genomic Era
 - Application of Computational Immunology to Vaccine Design
 - Target Identification for Vaccines
 - Computational vaccinology workflow
 - Cancer vaccines: computational modeling approaches
 - Reverse Vaccinology & Vaccine screening
 - Epitope-driven approaches for vaccine design
 - DNA vaccines
 - Allergen Bioinformatics
- □ Computational modelling and design of vaccines
- □ Computer-aided antibody design
 - Antibody CDR modeling
 - Predicting VL/VH domain orientations
 - Antibody-antigen recognition
 - o Affinity maturation by somatic mutations and computational design
- □ Computational T cell vaccine design
- □ Sequence-based methods
- Structure-based methods

- □ Computational B cell vaccine design
 - Sequence-based methods
 - Structure-based methods
- □ Peptide-based vaccine design
 - Insights from MHC-bound peptides
 - the peptide repertoire of HLA molecules
 - Predicting Peptide-MHC Binding
- □ Vaccine database and Data mining36
- □ Confirmatory tools and databases.
 - Epitope prediction and Servers & Vaccine candidate design
 - From immunome to vaccine: epitope mapping and vaccine design tools
- □ Vaccine safety and quality assessments
 - Assessment of ADME/Tox deficiencies
 - Assessment of allergenicity

Recommended / Reference Books:

- Flower, D. R. (2007). Immunoinformatics: Predicting immunogenicity in silico. Springer Science & Business Media.
- Baschieri, S. (2012). Innovation in Vaccinology: from design, through to delivery and testing. Springer Science & Business Media.
- □ Rappuoli, R., & Bagnoli, F. (2011). Vaccine design: Innovative approaches and novel strategies. Horizon Scientific Press.
- □ Sakharkar, K. R., Sakharkar, M. K., & Chandra, R. (2015). Post-Genomic Approaches in Drug and Vaccine Development.
- □ Tong, J. C., & Ranganathan, S. (2013). Computer-aided vaccine design. Elsevier.